Search results
Results from the WOW.Com Content Network
In 1936 Joel Henry Hildebrand suggested the square root of the cohesive energy density as a numerical value indicating solvency behavior. [1] This later became known as the "Hildebrand solubility parameter". Materials with similar solubility parameters will be able to interact with each other, resulting in solvation, miscibility or swelling.
Solubility parameter may refer to parameters of solubility: Hildebrand solubility parameter, a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility; Hansen solubility parameters, developed by Charles Hansen as a way of predicting if one material will dissolve in another and form a solution
The Hildebrand parameter for such non-polar solvents is usually close to the Hansen value. A typical example showing why Hildebrand parameters can be unhelpful is that two solvents, butanol and nitroethane, which have the same Hildebrand parameter, are each incapable of dissolving typical epoxy polymers. Yet a 50:50 mix gives a good solvency ...
[1] [2] Common extractants may be arranged in increasing order of polarity according to the Hildebrand solubility parameter: ethyl acetate < acetone < ethanol < methanol < acetone:water (7:3) < ethanol:water (8:2) < methanol:water (8:2) < water. Solid-liquid extractions at laboratory scales can use Soxhlet extractors. A solid sample containing ...
Hildebrand solubility parameter; Retrieved from "https: ... Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
logX m = ƒ 1 logX 1 + ƒ 2 logX 2. Where X m is the mole fraction solubility of the solute, X 1 and X 2 denote the mole fraction solubility in neat cosolvent and water. While this model is only correlative in nature, further analysis allows for the creation of a predictive element. Simplifying the above equation to: logX m = logX 2 + σ • ƒ 1
His 1924 monograph on the solubility of non-electrolytes, Solubility, was the classic reference for almost half a century. In 1927, Hildebrand coined the term "regular solution" (to be contrasted with "ideal solution") and discussed their thermodynamic aspects in 1929. A regular solution is one involving no entropy change when a small amount of ...