Search results
Results from the WOW.Com Content Network
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
In image processing, normalization is a process that changes the range of pixel intensity values. Applications include photographs with poor contrast due to glare, for example.
Histogram equalization is a non-linear transform which maintains pixel rank and is capable of normalizing for any monotonically increasing color transform function. It is considered to be a more powerful normalization transformation than the grey world method.
An adaptive equalizer is an equalizer that automatically adapts to time-varying properties of the communication channel. [1] It is frequently used with coherent modulations such as phase-shift keying , mitigating the effects of multipath propagation and Doppler spreading .
An image histogram is a type of histogram that acts as a graphical representation of the tonal distribution in a digital image. [1] It plots the number of pixels for each tonal value. By looking at the histogram for a specific image a viewer will be able to judge the entire tonal distribution at a glance.
A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.