Search results
Results from the WOW.Com Content Network
It is described by the fact that the discharge through a river of an approximate rectangular cross-section must, through conservation of mass, equal Q = u ¯ b h {\displaystyle Q={\bar {u}}bh} where Q {\displaystyle Q} is the volumetric discharge, u ¯ {\displaystyle {\bar {u}}} is the mean flow velocity, b {\displaystyle b} is the channel ...
If G represents stage for discharge Q, then the relationship between G and Q can possibly be approximated with an equation: Q = C r ( G − a ) β {\displaystyle Q=C_{r}(G-a)^{\beta }} where C r {\displaystyle C_{r}} and β {\displaystyle \beta } are rating curve constants, and a {\displaystyle a} is a constant which represents the gauge ...
= Equation 4 H 2 = h v e l + h e l e {\displaystyle H_{2}=h_{vel}+h_{ele}} Equation 5 In order to use this technique, it is important to note you must have some understanding of the system you are modeling.
The graph takes sediment particle size and water velocity into account. [2] The upper curve shows the critical erosion velocity in cm/s as a function of particle size in mm, while the lower curve shows the deposition velocity as a function of particle size. Note that the axes are logarithmic.
This is an average measure. For measuring the discharge of a river we need a different method and the most common is the 'area-velocity' method. The area is the cross sectional area across a river and the average velocity across that section needs to be measured for a unit time, commonly a minute.
The discharge may also be expressed as: Q = − dS/dT . Substituting herein the expression of Q in equation (1) gives the differential equation dS/dT = A·S, of which the solution is: S = exp(− A·t) . Replacing herein S by Q/A according to equation (1), it is obtained that: Q = A exp(− A·t) .
Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. [1] Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the ...
A vortex sheet is a term used in fluid mechanics for a surface across which there is a discontinuity in fluid velocity, such as in slippage of one layer of fluid over another. [1] While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous.