enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in connection with their studies of the tautochrone problem. The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the EulerLagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  4. Inverse problem for Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem_for...

    To simplify the notation, let = ˙ and define a collection of n 2 functions Φ j i by =. Theorem. (Douglas 1941) There exists a Lagrangian L : [0, T] × TM → R such that the equations (E) are its EulerLagrange equations if and only if there exists a non-singular symmetric matrix g with entries g ij depending on both u and v satisfying the following three Helmholtz conditions:

  5. Beltrami identity - Wikipedia

    en.wikipedia.org/wiki/Beltrami_identity

    The EulerLagrange equation serves to ... The solution to the brachistochrone problem is the cycloid. An example of an ... Solution to the catenary problem

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    However, the EulerLagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the EulerLagrange equations.

  7. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    This is similar to solving the EulerLagrange equation with Dirichlet boundary conditions. Additionally there are settings in which there are minimizers in , (,) but not in , (,). The idea of solving minimization problems while restricting the values on the boundary can be further generalized by looking on function spaces where the trace is ...

  8. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.

  9. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]