Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets. The intersection of two sets and , denoted by , [3] is the set of all objects that are members of both the sets and .
Registered trademark symbol: Trademark symbol ※ Reference mark: Asterisk, Dagger: Footnote ¤ Scarab (non-Unicode name) ('Scarab' is an informal name for the generic currency sign) § Section sign: section symbol, section mark, double-s, 'silcrow' Pilcrow; Semicolon: Colon ℠ Service mark symbol: Trademark symbol / Slash (non-Unicode name ...
The combined region of the two sets is called their union, denoted by A ∪ B, where A is the orange circle and B the blue. The union in this case contains all living creatures that either are two-legged or can fly (or both). The region included in both A and B, where the two sets overlap, is called the intersection of A and B, denoted by A ∩ B.
1. The difference of two sets: x~y is the set of elements of x not in y. 2. An equivalence relation \ The difference of two sets: x\y is the set of elements of x not in y. − The difference of two sets: x−y is the set of elements of x not in y. ≈ Has the same cardinality as × A product of sets / A quotient of a set by an equivalence ...
Two curves that overlap represent sets that intersect, that have common elements; the zone inside both curves represents the set of elements common to both sets (the intersection of the sets). A curve completely within the interior of another is a subset of it. Venn diagrams are a more restrictive form of Euler diagrams.
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
Symmetric difference of sets A and B, denoted A B or A ⊖ B, is the set of all objects that are a member of exactly one of A and B (elements which are in one of the sets, but not in both). For instance, for the sets {1, 2, 3} and {2, 3, 4}, the symmetric difference set is {1, 4}.