Search results
Results from the WOW.Com Content Network
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
Intuitively, the additivity property says that the probability assigned to the union of two disjoint (mutually exclusive) events by the measure should be the sum of the probabilities of the events; for example, the value assigned to the outcome "1 or 2" in a throw of a dice should be the sum of the values assigned to the outcomes "1" and "2".
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
The pmf allows the computation of probabilities of events such as (>) = / + / + / = /, and all other probabilities in the distribution. Figure 4: The probability mass function of a discrete probability distribution. The probabilities of the singletons {1}, {3}, and {7} are respectively 0.2, 0.5, 0.3. A set not containing any of these points has ...
Many other quantities used in quantum information theory also find motivation and justification in terms of measurements. For example, the trace distance between quantum states is equal to the largest difference in probability that those two quantum states can imply for a measurement outcome: [10]: 254
This leads to a constraint that α 2 + β 2 = 1; more generally the sum of the squared moduli of the probability amplitudes of all the possible states is equal to one. If to understand "all the possible states" as an orthonormal basis , that makes sense in the discrete case, then this condition is the same as the norm-1 condition explained above .
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.