Search results
Results from the WOW.Com Content Network
Advanced structural mechanics may include the effects of stability and non-linear behaviors. Mechanics of structures is a field of study within applied mechanics that investigates the behavior of structures under mechanical loads, such as bending of a beam, buckling of a column, torsion of a shaft, deflection of a thin shell, and vibration of a ...
Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture .
Linear Statics, Volume 1: Basis and Solids (Lecture Notes on Numerical Methods in Engineering and Sciences), Springer 2009. Oñate E., Structural Analysis with the Finite Element Method. Linear Statics, Volume 2: Beams, Plates and Shells (Lecture Notes on Numerical Methods in Engineering and Sciences), Springer 2010.
It uses methods of analytical solid mechanics, structural engineering, safety engineering, probability theory, and catastrophe theory to calculate the load and stress in the structural components and analyze the safety of a damaged structure. There is a direct analogy between fracture mechanics of solid and structural fracture mechanics:
Hibbeler, R.C. Statics and Mechanics of Materials, SI Edition. Prentice-Hall, 2004. ISBN 0-13-129011-8. Lebedev, Leonid P. and Michael J. Cloud. Approximating Perfection: A Mathematician's Journey into the World of Mechanics. Princeton University Press, 2004. ISBN 0-691-11726-8.
The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. [ 1 ] [ 2 ] The most common or simplest structural element subjected to bending moments is the beam .