Search results
Results from the WOW.Com Content Network
A square wave is a non-sinusoidal periodic waveform in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same duration at minimum and maximum. In an ideal square wave, the transitions between minimum and maximum are instantaneous.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Square integrable complex valued functions on the interval [0, 2π]. The set {e int /2π, n ∈ Z} is a Hilbert space basis, i.e. a maximal orthonormal set. The Fourier transform takes functions in the above space to elements of l 2 (Z), the space of square summable functions Z → C. The latter space is a Hilbert space and the Fourier ...
The operator is called the d'Alembertian (some authors denote this by only the square ). These equations are inhomogeneous versions of the wave equation, with the terms on the right side of the equation serving as the source functions for the wave. As with any wave equation, these equations lead to two types of solution: advanced potentials ...
By comparison with vector wave equations, the scalar wave equation can be seen as a special case of the vector wave equations; in the Cartesian coordinate system, the scalar wave equation is the equation to be satisfied by each component (for each coordinate axis, such as the x component for the x axis) of a vector wave without sources of waves ...
The inhomogeneous Helmholtz equation is the equation + = (),, where ƒ : R n → C is a function with compact support, and n = 1, 2, 3. This equation is very similar to the screened Poisson equation , and would be identical if the plus sign (in front of the k term) were switched to a minus sign.
In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation: v RMS = 3 R T M {\displaystyle v_{\text{RMS}}={\sqrt {3RT \over M}}}
The Klein–Gordon equation and the Dirac equation are two such equations. The Klein–Gordon equation, + =, was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation ...