Search results
Results from the WOW.Com Content Network
The amount of available space increases as the break value increases. The available space is initialized to a value of zero, unless the break is lowered and then increased, as it may reuse the same pages in some unspecified way. The break value can be automatically rounded up to a size appropriate for the memory management architecture. [4]
The compiled size of the structure is now 12 bytes. The last member is padded with the number of bytes required so that the total size of the structure should be a multiple of the largest alignment of any structure member (alignof(int) in this case, which = 4 on linux-32bit/gcc) [citation needed].
The canonical heap overflow technique overwrites dynamic memory allocation linkage (such as malloc metadata) and uses the resulting pointer exchange to overwrite a program function pointer. For example, on older versions of Linux , two buffers allocated next to each other on the heap could result in the first buffer overwriting the second ...
The following C99 function allocates a variable-length array of a specified size, fills it with floating-point values, and then passes it to another function for processing. Because the array is declared as an automatic variable, its lifetime ends when read_and_process() returns.
A memory leak reduces the performance of the computer by reducing the amount of available memory. A memory leak can cause an increase in memory usage and performance run-time, and can negatively impact the user experience. [4]
In computer science, manual memory management refers to the usage of manual instructions by the programmer to identify and deallocate unused objects, or garbage.Up until the mid-1990s, the majority of programming languages used in industry supported manual memory management, though garbage collection has existed since 1959, when it was introduced with Lisp.
The standard C library provides the function malloc() for allocating memory blocks from the heap. It takes the size of an object to allocate as a parameter and returns a pointer to a newly allocated block of memory suitable for storing the object, or it returns a null pointer if the allocation failed.
Dereferencing any of these variables could cause a segmentation fault: dereferencing the null pointer generally will cause a segfault, while reading from the wild pointer may instead result in random data but no segfault, and reading from the dangling pointer may result in valid data for a while, and then random data as it is overwritten.