enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.

  3. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]

  4. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...

  5. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    When the function is convex, all local minima are also global minima, so in this case gradient descent can converge to the global solution. This process is illustrated in the adjacent picture. Here, F {\displaystyle F} is assumed to be defined on the plane, and that its graph has a bowl shape.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Further, critical points can be classified using the definiteness of the Hessian matrix: If the Hessian is positive definite at a critical point, then the point is a local minimum; if the Hessian matrix is negative definite, then the point is a local maximum; finally, if indefinite, then the point is some kind of saddle point.

  8. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    Therefore, to find the local maxima and minima of a differentiable function, it suffices, theoretically, to compute the zeros of the gradient and the eigenvalues of the Hessian matrix at these zeros. This requires the solution of a system of equations , which can be a difficult task.

  9. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]