Search results
Results from the WOW.Com Content Network
In predictive analytics, a table of confusion (sometimes also called a confusion matrix) is a table with two rows and two columns that reports the number of true positives, false negatives, false positives, and true negatives. This allows more detailed analysis than simply observing the proportion of correct classifications (accuracy).
These can be arranged into a 2×2 contingency table (confusion matrix), conventionally with the test result on the vertical axis and the actual condition on the horizontal axis. These numbers can then be totaled, yielding both a grand total and marginal totals. Totaling the entire table, the number of true positives, false negatives, true ...
In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
The adaptive mixtures of local experts [5] [6] uses a gaussian mixture model.Each expert simply predicts a gaussian distribution, and totally ignores the input. Specifically, the -th expert predicts that the output is (,), where is a learnable parameter.
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.