Search results
Results from the WOW.Com Content Network
The multidimensional assignment problem (MAP) has two key parameters that determine the size of a problem instance: The dimensionality parameter D {\displaystyle D} The cardinality parameter N = | A | {\displaystyle N=|A|} , where | A | {\displaystyle |A|} denotes the number of elements in A {\displaystyle A} .
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
PL/I provides two facilities for array slicing. Using iSub DEFINING, an array slice can be declared using iSUB variables to map specific elements in a "base array" onto elements of the "defined array". iSUBs can define rows, columns, diagonals, or many-to-one mappings.
Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values. Functions that have more than one result may be implemented with lookup tables that are arrays of ...
It generalizes to n-ary functions, where the proper term is multilinear. For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × N → T with T an (R, S)-bimodule, and for which any n in N, m ↦ B(m, n) is an R-module homomorphism, and for any m in M, n ↦ B(m, n) is an S-module ...
Function calls and blocks of code, such as code contained within a loop, are often replaced by a one-line natural language sentence. Depending on the writer, pseudocode may therefore vary widely in style, from a near-exact imitation of a real programming language at one extreme, to a description approaching formatted prose at the other.