Search results
Results from the WOW.Com Content Network
The multidimensional assignment problem (MAP) has two key parameters that determine the size of a problem instance: The dimensionality parameter D {\displaystyle D} The cardinality parameter N = | A | {\displaystyle N=|A|} , where | A | {\displaystyle |A|} denotes the number of elements in A {\displaystyle A} .
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.
The compiler uses argument-dependent lookup to resolve the begin and end functions. [9] The C++ Standard Library also supports for_each, [10] that applies each element to a function, which can be any predefined function or a lambda expression. While range-based for is only from the start to the end, the range or direction can be changed by ...
a = [3, 1, 5, 7] // assign an array to the variable a a [0.. 1] // return the first two elements of a a [.. 1] // return the first two elements of a: the zero can be omitted a [2..] // return the element 3 till last one a [[0, 3]] // return the first and the fourth element of a a [[0, 3]] = [100, 200] // replace the first and the fourth element ...
Claim: If array A has length n, then permutations(n, A) will result in either A being unchanged, if n is odd, or, if n is even, then A is rotated to the right by 1 (last element shifted in front of other elements). Base: If array A has length 1, then permutations(1, A) will output A and stop, so A is unchanged. Since 1 is odd, this is what was ...