Search results
Results from the WOW.Com Content Network
Polyhedral frameworks typically also allow the use of symbolic expressions. Polyhedral frameworks can be used for dependence analysis for arrays, including both traditional alias analysis and more advanced techniques such as the analysis of data flow in arrays or identification of conditional dependencies. They can also be used to represent ...
The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.
They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron. A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces.
[4] [5] The Goldberg–Coxeter construction is an expansion of the concepts underlying geodesic polyhedra. 3 constructions for a {3,5+} 6,0 An icosahedron and related symmetry polyhedra can be used to define a high geodesic polyhedron by dividing triangular faces into smaller triangles, and projecting all the new vertices onto a sphere.
The polyhedral model (also called the polytope method) is a mathematical framework for programs that perform large numbers of operations -- too large to be explicitly enumerated -- thereby requiring a compact representation.
Many traditional polyhedral forms are n-dimensional polyhedra. Other examples include: A half-space is a polyhedron defined by a single linear inequality, a 1 T x ≤ b 1. A hyperplane is a polyhedron defined by two inequalities, a 1 T x ≤ b 1 and a 1 T x ≥ b 1 (which is equivalent to -a 1 T x ≤ -b 1). A quadrant in the plane.
The pentagonal cupola can be applied to construct a polyhedron.A construction that involves the attachment of its base to another polyhedron is known as augmentation; attaching it to prisms or antiprisms is known as elongation or gyroelongation.
All five have C 2 ×S 5 symmetry but can only be realised with half the symmetry, that is C 2 ×A 5 or icosahedral symmetry. [9] [10] [11] They are all topologically equivalent to toroids. Their construction, by arranging n faces around each vertex, can be repeated indefinitely as tilings of the hyperbolic plane. In the diagrams below, the ...