Search results
Results from the WOW.Com Content Network
If is the radius of the incircle of the triangle, then the triangle can be broken into three triangles of equal altitude and bases , , and . Their combined area is A = 1 2 a r + 1 2 b r + 1 2 c r = r s , {\displaystyle A={\tfrac {1}{2}}ar+{\tfrac {1}{2}}br+{\tfrac {1}{2}}cr=rs,} where s = 1 2 ( a + b + c ...
An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers ; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles ...
The radius of a triangle's circumcircle is twice the radius of that triangle's nine-point circle. [6]: p.153 Figure 3. A nine-point circle bisects a line segment going from the corresponding triangle's orthocenter to any point on its circumcircle. Figure 4
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The area (A) of a regular heptagon of side length a is given by: A = 7 4 a 2 cot π 7 ≃ 3.634 a 2 . {\displaystyle A={\frac {7}{4}}a^{2}\cot {\frac {\pi }{7}}\simeq 3.634a^{2}.} This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then ...
where ∆(APB) is the area of triangle APB. Denote the segments that the diagonal intersection P divides diagonal AC into as AP = p 1 and PC = p 2, and similarly P divides diagonal BD into segments BP = q 1 and PD = q 2. Then the quadrilateral is tangential if and only if any one of the following equalities are true: [30]