enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  5. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.

  6. Rational sieve - Wikipedia

    en.wikipedia.org/wiki/Rational_sieve

    We will factor the integer n = 187 using the rational sieve. We'll arbitrarily try the value B=7, giving the factor base P = {2,3,5,7}. The first step is to test n for divisibility by each of the members of P; clearly if n is divisible by one of these primes, then we are finished already. However, 187 is not divisible by 2, 3, 5, or 7.

  7. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    In number theory, a branch of mathematics, the special number field sieve (SNFS) is a special-purpose integer factorization algorithm. The general number field sieve (GNFS) was derived from it. The special number field sieve is efficient for integers of the form r e ± s , where r and s are small (for instance Mersenne numbers ).

  8. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    Sieve of Pritchard: algorithm steps for primes up to 150. In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. [1] It is especially suited to quick hand computation for small bounds.

  9. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the ...