enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrogen bond - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_bond

    Hydrogen bonds arise from a combination of electrostatics (multipole-multipole and multipole-induced multipole interactions), covalency (charge transfer by orbital overlap), and dispersion (London forces). [6] In weaker hydrogen bonds, [13] hydrogen atoms tend to bond to elements such as sulfur (S) or chlorine (Cl); even carbon (C) can serve as ...

  3. Intermolecular force - Wikipedia

    en.wikipedia.org/wiki/Intermolecular_force

    The oxygen atom’s two lone pairs interact with a hydrogen each, forming two additional hydrogen bonds, and the second hydrogen atom also interacts with a neighbouring oxygen. Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides, which have little capability to ...

  4. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...

  5. Salt bridge (protein and supramolecular) - Wikipedia

    en.wikipedia.org/wiki/Salt_bridge_(protein_and...

    In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding (Figure 1). Ion pairing is one of the most important noncovalent forces in chemistry, in biological systems, in different materials and in many applications such as ion pair chromatography. It is a most commonly observed ...

  6. Molecular self-assembly - Wikipedia

    en.wikipedia.org/wiki/Molecular_self-assembly

    Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.

  7. Cohesion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Cohesion_(chemistry)

    Among the forces that govern drop formation: cohesion, surface tension, Van der Waals force, Plateau–Rayleigh instability. Water, for example, is strongly cohesive as each molecule may make four hydrogen bonds to other water molecules in a tetrahedral configuration. This results in a relatively strong Coulomb force between molecules. In ...

  8. Dispersive adhesion - Wikipedia

    en.wikipedia.org/wiki/Dispersive_adhesion

    The source of adhesive forces, according to the dispersive adhesion mechanism, is the weak interactions that occur between molecules close together. [2] These interactions include London dispersion forces, Keesom forces, Debye forces and hydrogen bonds. Individually, these attractions are not very strong, but when summed over the bulk of a ...

  9. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    2 O is sp 3 hybridized in which the 2s atomic orbital and the three 2p orbitals of oxygen are hybridized to form four new hybridized orbitals which then participate in bonding by overlapping with the hydrogen 1s orbitals. As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with ...