Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.
For example, the double angle ... The Chebyshev polynomials of the second kind are defined by the recurrence relation: = () ... At a discontinuity, the series will ...
For example, if = and time is the ... is the Hankel function of the second kind, and () is the ... One can ensure proper discontinuity in the first derivative by ...
A Kleinian group is said to be of finite type if its region of discontinuity has a finite number of orbits of components under the group action, and the quotient of each component by its stabilizer is a compact Riemann surface with finitely many points removed, and the covering is ramified at finitely many points.
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R).The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
Then, the point x 0 = 1 is a jump discontinuity. In this case, a single limit does not exist because the one-sided limits, L − and L +, exist and are finite, but are not equal: since, L − ≠ L +, the limit L does not exist. Then, x 0 is called a jump discontinuity, step discontinuity, or discontinuity of the first kind.
The discontinuity of the ... for example: = (¯, ¯,,,). As ... Introducing an explicit expression for the Stirling numbers of the second kind into the finite sum ...