Search results
Results from the WOW.Com Content Network
A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. [1] It is a form of photoelectric cell, a device whose electrical characteristics (such as current , voltage , or resistance ) vary when it is exposed to light.
The primary function of a solar cell is the conversion of light energy into electrical energy by means of the photovoltaic effect. [16] In particular, polymer-fullerene bulk heterojunction solar cells are promising because of their potential in low processing costs and mechanical flexibility in comparison to conventional inorganic solar cells.
Quantum dot based photovoltaic cells based on dye-sensitized colloidal TiO 2 films were investigated in 1991 [2] and were found to exhibit promising efficiency of converting incident light energy to electrical energy, and to be incredibly encouraging due to the low cost of materials used.
Solar cell – made from a monocrystalline silicon wafer. Polymer solar cell – are a type of flexible solar cell. Nanocrystal solar cell – are solar cells based on a substrate with a coating of nanocrystals. Solar panel – (also solar module, photovoltaic module or photovoltaic panel) is a packaged, connected assembly of photovoltaic cells.
A solar cell (also called photovoltaic cell or photoelectric cell) is a solid state electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current ...
The theoretical performance of a solar cell was first studied in depth in the 1960s, and is today known as the Shockley–Queisser limit. The limit describes several loss mechanisms that are inherent to any solar cell design. The first are the losses due to blackbody radiation, a loss mechanism that affects any material object above absolute zero.
Band diagram of a silicon solar cell, corresponding to very low current (horizontal Fermi level), very low voltage (metal valence bands at same height), and therefore very low illumination. When a photon is absorbed, its energy is given to an electron in the crystal lattice. Usually this electron is in the valence band.
In a typical solar cell, the photovoltaic effect is used to generate electricity from sunlight. The light-absorbing or "active layer" of the solar cell is typically a semiconducting material, meaning that there is a gap in its energy spectrum between the valence band of localized electrons around host ions and the conduction band of higher-energy electrons which are free to move throughout the ...