Search results
Results from the WOW.Com Content Network
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM). The greatest common divisor is often written as gcd( a , b ) or, more simply, as ( a , b ) , [ 3 ] although the latter notation is ambiguous, also used for concepts such as an ideal in the ring of ...
Say we want to obtain the GCD of the two integers a and b. Let a ≥ b. If b contains only one digit (in the chosen base, say β = 1000 or β = 2 32), use some other method, such as the Euclidean algorithm, to obtain the result. If a and b differ in the length of digits, perform a division so that a and b are equal in length, with length equal ...
Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.
In other words, every GCD domain is a Schreier domain. For every pair of elements x, y of a GCD domain R, a GCD d of x and y and an LCM m of x and y can be chosen such that dm = xy, or stated differently, if x and y are nonzero elements and d is any GCD d of x and y, then xy/d is an LCM of x and y, and vice versa.
In mathematics, a greatest common divisor matrix (sometimes abbreviated as GCD matrix) is a matrix that may also be referred to as Smith's matrix. The study was initiated by H.J.S. Smith (1875). A new inspiration was begun from the paper of Bourque & Ligh (1992). This led to intensive investigations on singularity and divisibility of GCD type ...
A simple and sufficient test for the absence of a dependence is the greatest common divisor (GCD) test. It is based on the observation that if a loop carried dependency exists between X[a*i + b] and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable), then GCD (c, a) must divide (d – b).
Q) A positive integer 'n' has the property that the least common multiple of n and 36 is 500 greater than the greatest common factor of n and 36. What is 'n'? Written mathematically: LCM(36,n) – 500 = GCF(36,n)... n=? Thanks C. Nelson 22:26, 2 October 2005 (UTC)