Search results
Results from the WOW.Com Content Network
In the C and C++ programming languages, an inline function is one qualified with the keyword inline; this serves two purposes: . It serves as a compiler directive that suggests (but does not require) that the compiler substitute the body of the function inline by performing inline expansion, i.e. by inserting the function code at the address of each function call, thereby saving the overhead ...
C++ began as a fork of an early, pre-standardized C, and was designed to be mostly source-and-link compatible with C compilers of the time. [1] [2] Due to this, development tools for the two languages (such as IDEs and compilers) are often integrated into a single product, with the programmer able to specify C or C++ as their source language.
The two figures below show 3D views of respectively atan2(y, x) and arctan( y / x ) over a region of the plane. Note that for atan2(y, x), rays in the X/Y-plane emanating from the origin have constant values, but for arctan( y / x ) lines in the X/Y-plane passing through the origin have constant
The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.
In computing, inline expansion, or inlining, is a manual or compiler optimization that replaces a function call site with the body of the called function. Inline expansion is similar to macro expansion, but occurs during compilation, without changing the source code (the text), while macro expansion occurs prior to compilation, and results in different text that is then processed by the compiler.
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by θ ∈ [ 0 , π ] {\displaystyle \theta \in [0,\pi ]} : it is the angle between the z -axis and the radial vector connecting the origin to the point in ...
The technique was formalized in 1989 as "F-bounded quantification."[2] The name "CRTP" was independently coined by Jim Coplien in 1995, [3] who had observed it in some of the earliest C++ template code as well as in code examples that Timothy Budd created in his multiparadigm language Leda. [4]
The long double type was present in the original 1989 C standard, [1] but support was improved by the 1999 revision of the C standard, or C99, which extended the standard library to include functions operating on long double such as sinl() and strtold().