Search results
Results from the WOW.Com Content Network
Values are in kelvin K and degrees Celsius °C, rounded For the equivalent in degrees Fahrenheit °F, see: Boiling points of the elements (data page) Some values are predictions
At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K). Its boiling point and critical point depend on the isotope of helium present: the common isotope helium-4 or the rare isotope helium-3. These are the only two stable isotopes of helium.
Below its boiling point of 4.22 K (−268.93 °C; −452.07 °F) and above the lambda point of 2.1768 K (−270.9732 °C; −455.7518 °F), the isotope helium-4 exists in a normal colorless liquid state, called helium I. [30] Like other cryogenic liquids, helium I boils when it is heated and contracts when its temperature is lowered. Below the ...
Helium also has a very low boiling point (-268.9°C or -452°F), allowing it to remain a gas even in super-cold environments, an important feature because many rocket fuels are stored in that ...
However, Kamerlingh Onnes, his rival, was the first to liquefy helium, in 1908, using several precooling stages and the Hampson–Linde cycle. He lowered the temperature to the boiling point of helium −269 °C (−452.20 °F; 4.15 K). By reducing the pressure of the liquid helium, he achieved an even lower temperature, near 1.5 K.
20.28 K, boiling point of bound hydrogen; 33 K, critical temperature of hydrogen; 44 K mean on Pluto; 53 K mean of Neptune; 63 K, melting point of bound nitrogen; 68 K mean of Uranus; 77.35 K, boiling point of bound nitrogen; 90.19 K, boiling point of bound oxygen; 92 K, superconductivity point of Y–Ba–Cu–oxide
Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for T c and P c is indicated by the number of digits.
In 1908 he managed to lower the temperature to less than −269 °C (−452.2 F, 4 K), which is four degrees above absolute zero. Only in this exceptionally cold state will helium liquefy; the boiling point of helium being at −268.94 °C (−452.092 F). Kamerlingh Onnes received a Nobel Prize for his achievement. [9]