Search results
Results from the WOW.Com Content Network
In biology, offspring are the young creation of living organisms, produced either by sexual or asexual reproduction. Collective offspring may be known as a brood or progeny . This can refer to a set of simultaneous offspring, such as the chicks hatched from one clutch of eggs , or to all offspring produced over time, as with the honeybee .
Heredity of phenotypic traits: a father and son with prominent ears and crowns. DNA structure. Bases are in the centre, surrounded by phosphate–sugar chains in a double helix. In humans, eye color is an example of an inherited characteristic: an individual might inherit the "brown-eye trait" from one of the parents. [1]
Offspring inherit one allele for each trait from each parent. Thus, offspring have a combination of the parents' genes. It is believed that "the masking of deleterious alleles favors the evolution of a dominant diploid phase in organisms that alternate between haploid and diploid phases" where recombination occurs freely.
Traits controlled by two or more genes are said to be polygenic traits. Polygenic means "many genes" are necessary for the organism to develop the trait. For example, at least three genes are involved in making the reddish-brown pigment in the eyes of fruit flies. Polygenic traits often show a wide range of phenotypes.
The offspring display traits and characteristics of both parents, but are often sterile, preventing gene flow between the species. [34] Sterility is often attributed to the different number of chromosomes between the two species. For example, donkeys have 62 chromosomes, horses have 64 chromosomes, and mules or hinnies have 63
[1] [2] [3] It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time.
Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.
In genetics, a maternal effect occurs when the phenotype of an organism is determined by the genotype of its mother. [1] For example, if a mutation is maternal effect recessive, then a female homozygous for the mutation may appear phenotypically normal, however her offspring will show the mutant phenotype, even if they are heterozygous for the mutation.