enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.

  3. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    After computing the GCD of the polynomial and its derivative, further GCD computations provide the complete square-free factorization of the polynomial, which is a factorization = = ⁡ where, for each i, the polynomial f i either is 1 if f does not have any root of multiplicity i or is a square-free polynomial (that is a polynomial without ...

  4. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Graeffe's method – Algorithm for finding polynomial roots; Lill's method – Graphical method for the real roots of a polynomial; MPSolve – Software for approximating the roots of a polynomial with arbitrarily high precision; Multiplicity (mathematics) – Number of times an object must be counted for making true a general formula

  6. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    So, except for very low degrees, root finding of polynomials consists of finding approximations of the roots. By the fundamental theorem of algebra, a polynomial of degree n has exactly n real or complex roots counting multiplicities. It follows that the problem of root finding for polynomials may be split in three different subproblems;

  7. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3×5×7) and this polynomial is the first one that has a coefficient other than 1, 0, or −1: [3]

  8. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    As R is a homogeneous polynomial in two indeterminates, the fundamental theorem of algebra implies that R is a product of pq linear polynomials. If one defines the multiplicity of a common zero of P and Q as the number of occurrences of the corresponding factor in the product, Bézout's theorem is thus proved.