Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
CRISPR gene editing (CRISPR, pronounced / ˈ k r ɪ s p ə r / (crisper), refers to a clustered regularly interspaced short palindromic repeats") is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified.
Cas9 (or "CRISPR-associated protein 9") is an enzyme that uses CRISPR sequences as a guide to recognize and open up specific strands of DNA that are complementary to the CRISPR sequence. Cas9 enzymes together with CRISPR sequences form the basis of a technology known as CRISPR-Cas9 that can be used to edit genes within living organisms.
See: Guide RNA, CRISPR. Complementary base pairing between the sgRNA and genomic DNA allows targeting of Cas9 or dCas9. A small guide RNA (sgRNA), or gRNA is an RNA with around 20 nucleotides used to direct Cas9 or dCas9 to their targets. gRNAs contain two major regions of importance for CRISPR systems: the scaffold and spacer regions.
Fast-paced developments in the CRISPR-Cas9 gene editing technology has increased both the concerns and relevance of this ethical controversy as it has become more popularly used. [ 19 ] [ 20 ] The scientific community recommends continued evaluation of risks and benefits of utilizing genetically modified organisms in everyday life. [ 21 ]
CRISPR RNA or crRNA is a RNA transcript from the CRISPR locus. [1] CRISPR-Cas (clustered, regularly interspaced short palindromic repeats - CRISPR associated systems) is an adaptive immune system found in bacteria and archaea to protect against mobile genetic elements , like viruses , plasmids , and transposons . [ 2 ]
Off-target genome editing refers to nonspecific and unintended genetic modifications that can arise through the use of engineered nuclease technologies such as: clustered, regularly interspaced, short palindromic repeats ()-Cas9, transcription activator-like effector nucleases (), meganucleases, and zinc finger nucleases (ZFN). [1]
The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR associated nucleases) system was originally discovered to be an acquired immune response mechanism used by archaea and bacteria. It has since been adopted for use as a tool in the genetic engineering of higher organisms.