Search results
Results from the WOW.Com Content Network
CIE 1931 xy chromaticity diagram showing the gamut of the wide-gamut RGB color space and location of the primaries. The D50 white point is shown in the center.. The wide-gamut RGB color space (or Adobe Wide Gamut RGB) is a color space developed by Adobe Systems, that offers a large gamut by using pure spectral primary colors. [1]
Oklab's model is fitted with improved color appearance data: CAM16 data for lightness and chroma, and IPT data for hue. The new fit addresses issues such as unexpected hue and lightness changes in blue colors present in the CIELAB color space, simplifying the creation of color schemes and smoother color gradients. [1] [7] [4]
It is able to store a wider range of color values than sRGB. The Wide Gamut color space is an expanded version of the Adobe RGB color space, developed in 1998. As a comparison, the Adobe Wide Gamut RGB color space encompasses 77.6% of the visible colors specified by the Lab color space, whilst the standard Adobe RGB color space covers just 50.6%.
A rainbow is a decomposition of white light into all of the spectral colors. Laser beams are monochromatic light, thereby exhibiting spectral colors. A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band (e.g. lasers).
The derived color space specified by x, y, and Y is known as the CIE xyY color space and is widely used to specify colors in practice. The X and Z tristimulus values can be calculated back from the chromaticity values x and y and the Y tristimulus value: [ 17 ]
Spectral colors simple table|colour=y}} will display the same table except that the British spelling "colour" is used instead of the American spelling "color". sRGB rendering of the spectrum of visible light
Color space conversion is the translation of the representation of a color from one basis to another. This typically occurs in the context of converting an image that is represented in one color space to another color space, the goal being to make the translated image look as similar as possible to the original.
The LMS color space can be used to emulate the way color-blind people see color. An early emulation of dichromats were produced by Brettel et al. 1997 and was rated favorably by actual patients. An example of a state-of-the-art method is Machado et al. 2009. [20]