enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure

  4. Conditional variance - Wikipedia

    en.wikipedia.org/wiki/Conditional_variance

    The conditional variance tells us how much variance is left if we use ⁡ to "predict" Y. Here, as usual, E ⁡ ( Y ∣ X ) {\displaystyle \operatorname {E} (Y\mid X)} stands for the conditional expectation of Y given X , which we may recall, is a random variable itself (a function of X , determined up to probability one).

  5. Squared deviations from the mean - Wikipedia

    en.wikipedia.org/wiki/Squared_deviations_from...

    Squared deviations from the mean (SDM) result from squaring deviations.In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data).

  6. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    In probability theory, the law of total variance [1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then

  7. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Because of the reciprocity of estimator-variance and Fisher information, minimizing the variance corresponds to maximizing the information. When the linear (or linearized) statistical model has several parameters, the mean of the parameter estimator is a vector and its variance is a matrix. The inverse of the variance matrix is called the ...

  8. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...

  9. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.