Search results
Results from the WOW.Com Content Network
Acyclic aliphatic/non-aromatic compound Cyclic aliphatic/non-aromatic compound (cyclobutane)In organic chemistry, hydrocarbons (compounds composed solely of carbon and hydrogen) are divided into two classes: aromatic compounds and aliphatic compounds (/ ˌ æ l ɪ ˈ f æ t ɪ k /; G. aleiphar, fat, oil).
The authors initially proposed that the reaction would convert aldehydes to alkenes via a pseudo-Wittig type reaction; however, β-ketoesters were the only products to be observed. The authors also noted that aliphatic aldehyde gave higher yield than aromatic aldehydes due to enolization. Additionally, the mild reaction conditions shows ...
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
The Perkin reaction is an organic reaction developed by English chemist William Henry Perkin in 1868 that is used to make cinnamic acids.It gives an α,β-unsaturated aromatic acid or α-substituted β-aryl acrylic acid by the aldol condensation of an aromatic aldehyde and an acid anhydride, in the presence of an alkali salt of the acid.
The method works on unbranched aliphatic aldehydes, which are often poor electrophiles for catalytic, asymmetric processes. This may be due to poor electronic and steric differentiation between their enantiofaces. The analogous vinylogous Mukaiyama aldol process can also be rendered catalytic and asymmetric. The example shown below works ...
Cyclopentenone and various aromatic and aliphatic aldehydes undergo an asymmetric reaction using Fu's planar chiral DMAP catalyst in isopropanol (54-96% yield, 53-98% ee). In this case, magnesium iodide as a Lewis acid cocatalyst was required to accelerate the reaction. [25] P-Chiral phosphines have been investigated. [26]
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
In addition to aliphatic, aromatic, and α,β-unsaturated aldehydes, acyl nitriles and 1,2-diketones are also suitable substrates. Few methods exist for decarbonylation. One illustrative application is the synthesis of the core nucleus of FR-900482. [3]