Search results
Results from the WOW.Com Content Network
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
To see this, choose a monic irreducible polynomial f(X 1, ..., X n, Y) whose root generates N over E. If f(a 1, ..., a n, Y) is irreducible for some a i, then a root of it will generate the asserted N 0.) Construction of elliptic curves with large rank. [2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's ...
The converse of this criterion is that, if p is an irreducible polynomial with integer coefficients that have greatest common divisor 1, then there exists a base such that the coefficients of p form the representation of a prime number in that base.
In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.
Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example, [ 4 ] consider f ( x , y ) = x p + a y p ∈ k [ x , y ] {\displaystyle f(x,y)=x^{p}+ay^{p}\in k[x,y]} for k {\displaystyle k} an imperfect field of characteristic p {\displaystyle p} and a ...
The fact that the polynomial after substitution is irreducible then allows concluding that the original polynomial is as well. This procedure is known as applying a shift . For example consider H = x 2 + x + 2 , in which the coefficient 1 of x is not divisible by any prime, Eisenstein's criterion does not apply to H .
The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967. It was the dominant algorithm for solving the problem until the Cantor–Zassenhaus algorithm of 1981. It is currently implemented in many well-known computer algebra systems.
Let f in F[X] be an irreducible polynomial and f ' its formal derivative. Then the following are equivalent conditions for the irreducible polynomial f to be separable: If E is an extension of F in which f is a product of linear factors then no square of these factors divides f in E[X] (that is f is square-free over E). [6]