enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  3. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .

  4. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.

  5. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  6. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    Let y (n) (x) be the nth derivative of the unknown function y(x).Then a Cauchy–Euler equation of order n has the form () + () + + =. The substitution = (that is, = ⁡ (); for <, in which one might replace all instances of by | |, extending the solution's domain to {}) can be used to reduce this equation to a linear differential equation with constant coefficients.

  7. Conservation form - Wikipedia

    en.wikipedia.org/wiki/Conservation_form

    Conservation form or Eulerian form refers to an arrangement of an equation or system of equations, usually representing a hyperbolic system, that emphasizes that a property represented is conserved, i.e. a type of continuity equation. The term is usually used in the context of continuum mechanics.

  8. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    This is why in numerical work the homogeneous form is to be preferred if distortion is to be avoided. The direction cosine matrix (from the rotated Body XYZ coordinates to the original Lab xyz coordinates for a clockwise/lefthand rotation) corresponding to a post-multiply Body 3-2-1 sequence with Euler angles (ψ, θ, φ) is given by: [1]

  9. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.