enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = ⁡ (″) and the above approximation follows when tan X is replaced by X.

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.

  4. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    The solid angle of an object that is very far away is roughly proportional to the ratio of area to squared distance. Here "area" means the area of the object when projected along the viewing direction. Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian.

  5. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Illustration of the sine and tangent inequalities. The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = ⁡ = ⁡

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The area enclosed and the square of its radius are proportional. The constants of proportionality are 2 π and π respectively. The circle that is centred at the origin with radius 1 is called the unit circle. Thought of as a great circle of the unit sphere, it becomes the Riemannian circle.

  7. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y.

  8. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S 1 because it is a one-dimensional unit n-sphere ...

  9. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of the circle. Thus the lengths of the segments from P to the two tangent points are equal. By the secant-tangent theorem, the square of this tangent length equals the power of the point P in the ...