Search results
Results from the WOW.Com Content Network
Similar calculations are carried out to determine pixel positions along a line with negative slope. Thus, if the absolute value of the slope is less than 1, we set dx=1 if x s t a r t < x e n d {\displaystyle x_{\rm {start}}<x_{\rm {end}}} i.e. the starting extreme point is at the left.
The slope of the line BE is the quotient of the lengths of ED and BD, which is x 2 / x/2 = 2x. But 2x is also the slope (first derivative) of the parabola at E. Therefore, the line BE is the tangent to the parabola at E.
In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
The equation of a line can be given in vector form: = + Here a is the position of a point on the line, and n is a unit vector in the direction of the line. Then as scalar t varies, x gives the locus of the line. The distance of an arbitrary point p to this line is given by
An ellipse in general position can be expressed as = + = + + as the parameter t varies from 0 to 2 π . Here ( X c , Y c ) is the center of the ellipse, and φ is the angle between the x -axis and the major axis of the ellipse.
Consider, for example, the one-parameter family of tangent lines to the parabola y = x 2. These are given by the generating family F(t,(x,y)) = t 2 – 2tx + y. The zero level set F(t 0,(x,y)) = 0 gives the equation of the tangent line to the parabola at the point (t 0,t 0 2).
Successive parabolic interpolation is a technique for finding the extremum (minimum or maximum) of a continuous unimodal function by successively fitting parabolas (polynomials of degree two) to a function of one variable at three unique points or, in general, a function of n variables at 1+n(n+3)/2 points, and at each iteration replacing the "oldest" point with the extremum of the fitted ...