Search results
Results from the WOW.Com Content Network
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
[2] [3] He similarly discovered the principles of electromagnetic induction, diamagnetism, and the laws of electrolysis. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts that electricity became practical for use in technology. [4]
The history of electromagnetic induction, a facet of electromagnetism, began with observations of the ancients: electric charge or static electricity (rubbing silk on amber), electric current , and magnetic attraction . Understanding the unity of these forces of nature, and the scientific theory of electromagnetism was initiated and achieved ...
[37]: 88 This is the operating principle of the Faraday cage, a conducting metal shell that isolates its interior from outside electrical effects. The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium.
Inductance — The phenomenon whereby the property of a circuit by which energy is stored in the form of an electromagnetic field. Induction heating — Heat produced in a conductor when eddy currents pass through it. Joule heating — Heat produced in a conductor when charges move through it, such as in resistors and wires.
The electromagnetic induction is the operating principle behind many electric generators: for example, a rotating bar magnet creates a changing magnetic field and generates an electric field in a nearby wire.
Aluminium ring moved by electromagnetic induction, thus demonstrating Lenz's law. Experiment showing Lenz's law with two aluminium rings on a scales-like device set up on a pivot so as to freely move in the horizontal plane. One ring is fully enclosed, while the other has an opening, not forming a complete circle.