Search results
Results from the WOW.Com Content Network
In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids.
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term. [2]
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
If there is a band gap between two consecutive energy bands of the infinite system, there is a sharp distinction between two types of states in the finite lattice. For each energy band of the infinite system, there are N − 1 {\displaystyle N-1} bulk states whose energies depend on the length N {\displaystyle N} but not on the termination τ ...
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.
Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...
The Ising model is given by the usual cubic lattice graph = (,) where is an infinite cubic lattice in or a period cubic lattice in , and is the edge set of nearest neighbours (the same letter is used for the energy functional but the different usages are distinguishable based on context).
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...