enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  4. Product order - Wikipedia

    en.wikipedia.org/wiki/Product_order

    The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]

  5. Hanner polytope - Wikipedia

    en.wikipedia.org/wiki/Hanner_polytope

    Every Hanner polytope can be given vertex coordinates that are 0, 1, or −1. [6] More explicitly, if P and Q are Hanner polytopes with coordinates in this form, then the coordinates of the vertices of the Cartesian product of P and Q are formed by concatenating the coordinates of a vertex in P with the coordinates of a vertex in Q.

  6. Ternary relation - Wikipedia

    en.wikipedia.org/wiki/Ternary_relation

    Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs, i.e. a subset of the Cartesian product A × B of some sets A and B, so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A, B and C.

  7. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    The product in this category is given by the cartesian product of sets. The coproduct is given by the disjoint union: given sets A i where i ranges over some index set I, we construct the coproduct as the union of A i ×{i} (the cartesian product with i serves to ensure that all the components stay disjoint).

  8. Games on AOL.com: Free online games, chat with others in real ...

    www.aol.com/games/play/masque-publishing/astralume

    Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. König's theorem (set theory) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(set_theory)

    [1] (Of course, Kőnig's theorem is trivial if the cardinal numbers m i and n i are finite and the index set I is finite. If I is empty, then the left sum is the empty sum and therefore 0, while the right product is the empty product and therefore 1.) Kőnig's theorem is remarkable because of the strict inequality in the conclusion.