Search results
Results from the WOW.Com Content Network
Information about the actual properties, such as size, of the basic arithmetic types, is provided via macro constants in two headers: <limits.h> header (climits header in C++) defines macros for integer types and <float.h> header (cfloat header in C++) defines macros for floating-point types. The actual values depend on the implementation.
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
However, supposing that floating-point comparisons are expensive, and also supposing that float is represented according to the IEEE floating-point standard, and integers are 32 bits wide, we could engage in type punning to extract the sign bit of the floating-point number using only integer operations:
[1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions. Most of these functions are also available in the C++ standard library, though in different headers (the C headers are included as well, but only as a deprecated compatibility feature).
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The Intel C++ compiler on Microsoft Windows supports extended precision, but requires the /Qlong‑double switch for long double to correspond to the hardware's extended precision format. [3] Compilers may also use long double for the IEEE 754 quadruple-precision binary floating-point format (binary128).
This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.
C and C++ perform such promotion for objects of Boolean, character, wide character, enumeration, and short integer types which are promoted to int, and for objects of type float, which are promoted to double. Unlike some other type conversions, promotions never lose precision or modify the value stored in the object. In Java: