enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  3. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...

  4. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The first is parallel to the plane, the second is orthogonal. For a given vector and plane, the sum of projection and rejection is equal to the original vector. Similarly, for inner product spaces with more than three dimensions, the notions of projection onto a vector and rejection from a vector can be generalized to the notions of projection ...

  5. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  7. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    The Archimedean spiral has two arms, one for θ > 0 and one for θ < 0. The two arms are smoothly connected at the origin. Only one arm is shown on the accompanying graph. Taking the mirror image of this arm across the y-axis will yield the other arm.

  8. Parallel transport - Wikipedia

    en.wikipedia.org/wiki/Parallel_transport

    Then a vector field X is said to be parallel if for any vector field Y, ∇ Y X = 0. Intuitively speaking, parallel vector fields have all their derivatives equal to zero and are therefore in some sense constant. By evaluating a parallel vector field at two points x and y, an identification between a tangent vector at x and one at y is obtained ...

  9. Steinitz's theorem - Wikipedia

    en.wikipedia.org/wiki/Steinitz's_theorem

    As Lovász shows, when the graph is polyhedral, a representation of it as a polyhedron can be obtained by finding a weighted adjacency matrix of corank three, finding three vectors forming a basis for its nullspace, using the coefficients of these vectors as coordinates for the vertices of a polyhedron, and scaling these vertices appropriately ...