enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The volume of a pyramid was recorded back in ancient Egypt, where they calculated the volume of a square frustum, suggesting they acquainted the volume of a square pyramid. [26] The formula of volume for a general pyramid was discovered by Indian mathematician Aryabhata, where he quoted in his Aryabhatiya that the volume of a pyramid is ...

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    This is a list of volume formulas of basic shapes: [4]: 405–406 ... Pyramid – , where is the base's area ...

  5. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":

  6. Moscow Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Moscow_Mathematical_Papyrus

    The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]

  7. Ancient Egyptian mathematics - Wikipedia

    en.wikipedia.org/wiki/Ancient_Egyptian_mathematics

    In section IV.3 of the Lahun Mathematical Papyri the volume of a granary with a circular base is found using the same procedure as RMP 43. Rectangular (Cuboid): Several problems in the Moscow Mathematical Papyrus (problem 14) and in the Rhind Mathematical Papyrus (numbers 44, 45, 46) compute the volume of a rectangular granary. [13]

  8. Egyptian geometry - Wikipedia

    en.wikipedia.org/wiki/Egyptian_geometry

    The problem includes a diagram indicating the dimensions of the truncated pyramid. Several problems compute the volume of cylindrical granaries (41, 42, and 43 of the RMP), while problem 60 RMP seems to concern a pillar or a cone instead of a pyramid. It is rather small and steep, with a seked (slope) of four palms (per cubit). [10]

  9. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The volume is computed as F times the volume of the pyramid whose base is a regular p-gon and whose height is the inradius r. That is, =. The following table lists the various radii of the Platonic solids together with their surface area and volume.