Search results
Results from the WOW.Com Content Network
The peak-to-average power ratio (PAPR) is the peak amplitude squared (giving the peak power) divided by the RMS value squared (giving the average power). [1] It is the square of the crest factor. When expressed in decibels , crest factor and PAPR are equivalent, due to the way decibels are calculated for power ratios vs amplitude ratios .
In the important case that E(t) is sinusoidally varying at some frequency with peak amplitude E peak, E rms is /, with the average Poynting vector then given by: =. This is the most common form for the energy flux of a plane wave, since sinusoidal field amplitudes are most often expressed in terms of their peak values, and complicated problems ...
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
Peak envelope power (PEP) is the average power over a single radio frequency cycle at the crest of the modulation. This is a Federal Communications Commission definition. PEP is normally considered the occasional or continuously repeating crest of the modulation envelope under normal operating conditions.
Peak values can be calculated from RMS values from the above formula, which implies V P = V RMS × √ 2, assuming the source is a pure sine wave. Thus the peak value of the mains voltage in the USA is about 120 × √ 2, or about 170 volts. The peak-to-peak voltage, being double this, is about 340 volts.
The power spectral density (PSD) of the signal describes the power present in the signal as a function of frequency, per unit frequency. Power spectral density is commonly expressed in SI units of watts per hertz (abbreviated as W/Hz). [2]
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =