Search results
Results from the WOW.Com Content Network
The peak-to-average power ratio (PAPR) is the peak amplitude squared (giving the peak power) divided by the RMS value squared (giving the average power). [1] It is the square of the crest factor. When expressed in decibels , crest factor and PAPR are equivalent, due to the way decibels are calculated for power ratios vs amplitude ratios .
The power spectral density (PSD) of the signal describes the power present in the signal as a function of frequency, per unit frequency. Power spectral density is commonly expressed in SI units of watts per hertz (abbreviated as W/Hz). [2]
Peak envelope power (PEP) is the average power over a single radio frequency cycle at the crest of the modulation. This is a Federal Communications Commission definition. PEP is normally considered the occasional or continuously repeating crest of the modulation envelope under normal operating conditions.
Hence, the contribution to the average power of () coming from the component with frequency is . All these contributions add up to the average power of x ( t ) . {\displaystyle x(t).} Then the power as a function of frequency is 1 2 A k 2 , {\displaystyle {\tfrac {1}{2}}A_{k}^{2},} and its statistical cumulative distribution function S ( ν ...
The convention of "width" meaning "half maximum" is also widely used in signal processing to define bandwidth as "width of frequency range where less than half the signal's power is attenuated", i.e., the power is at least half the maximum.
Peak power refers to the maximum of the instantaneous power waveform, which, for a sine wave, is always twice the average power. [ 16 ] [ 1 ] [ 17 ] [ 18 ] For other waveforms, the relationship between peak power and average power is the peak-to-average power ratio (PAPR).
Peak values can be calculated from RMS values from the above formula, which implies V P = V RMS × √ 2, assuming the source is a pure sine wave. Thus the peak value of the mains voltage in the USA is about 120 × √ 2, or about 170 volts. The peak-to-peak voltage, being double this, is about 340 volts.
The power measurement is often the average power used while running the benchmark, but other measures of power usage may be employed (e.g. peak power, idle power). For example, the early UNIVAC I computer performed approximately 0.015 operations per watt-second (performing 1,905 operations per second (OPS), while consuming 125 kW).