Search results
Results from the WOW.Com Content Network
When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: Ox + z e − → Red. The reaction quotient (Q r) is the ratio of the chemical activity (a i) of the reduced form (the reductant, a Red) to the activity of the oxidized form (the oxidant, a ox).
The main reasons for the common use of enzymes in biosensors are: 1) ability to catalyze a large number of reactions; 2) potential to detect a group of analytes (substrates, products, inhibitors, and modulators of the catalytic activity); and 3) suitability with several different transduction methods for detecting the analyte.
In rat liver, the total amount of NAD + and NADH is approximately 1 μmole per gram of wet weight, about 10 times the concentration of NADP + and NADPH in the same cells. [17] The actual concentration of NAD + in cell cytosol is harder to measure, with recent estimates in animal cells ranging around 0.3 mM , [ 18 ] [ 19 ] and approximately 1.0 ...
[1] [3] In general, settings with limited resources could benefit from low-cost, easy to use, on-site, and rapid testing of water samples. In addition, there is a need for home-care testing. Widespread distribution of adequate but low-cost diagnostic devices, such as paper-based biosensors, could potentially alleviate disease burden.
In amperometric biosensors, an enzyme-catalyzed redox reaction causes a redox electron current that is measured by a working electrode. [11] Amperometric biosensors have been used in bio-MEMS for detection of glucose, galactose, lactose, urea, and cholesterol, as well as for applications in gas detection and DNA hybridization. [11]
Bio-FETs couple a transistor device with a bio-sensitive layer that can specifically detect bio-molecules such as nucleic acids and proteins. A Bio-FET system consists of a semiconducting field-effect transistor that acts as a transducer separated by an insulator layer (e.g. SiO 2) from the biological recognition element (e.g. receptors or probe molecules) which are selective to the target ...
The systematic name of this enzyme class is (3R)-3-hydroxyacyl-[acyl-carrier-protein]:NAD + oxidoreductase. Other names in common use include 3-oxoacyl-[acyl carrier protein] (reduced nicotinamide adenine , dinucleotide) reductase , and 3-oxoacyl-[acyl-carrier-protein] reductase (NADH) .
These processes are common in plant roots due to the fact that if the nitrogen deficient conditions exist (with access to ammonium and nitrate ions), there will be a first priority of ammonium uptake. [1] Thus, the two substrates of this enzyme are L-glutamate and NAD +, whereas its 4 products are L-glutamine, 2-oxoglutarate, NADH, and H +.