Search results
Results from the WOW.Com Content Network
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
Mason–Stothers theorem (polynomials) Master theorem (analysis of algorithms) (recurrence relations, asymptotic analysis) Maschke's theorem (group representations) Matiyasevich's theorem (mathematical logic) Max flow min cut theorem (graph theory) Max Noether's theorem (algebraic geometry) Maximal ergodic theorem (ergodic theory)
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
For looking up a given entry in a given ordered list, both the binary and the linear search algorithm (which ignores ordering) can be used. The analysis of the former and the latter algorithm shows that it takes at most log 2 n and n check steps, respectively, for a list of size n.
recursion theorem 1. Master theorem (analysis of algorithms) 2. Kleene's recursion theorem recursive definition A definition of a function, set, or other mathematical object that is defined in terms of itself, using a base case and a rule for generating subsequent elements. recursive function
The closed form follows from the master theorem for divide-and-conquer recurrences. The number of comparisons made by merge sort in the worst case is given by the sorting numbers. These numbers are equal to or slightly smaller than (n ⌈lg n⌉ − 2 ⌈lg n⌉ + 1), which is between (n lg n − n + 1) and (n lg n + n + O(lg n)). [6]
Binary search, a decrease-and-conquer algorithm where the subproblems are of roughly half the original size, has a long history. While a clear description of the algorithm on computers appeared in 1946 in an article by John Mauchly , the idea of using a sorted list of items to facilitate searching dates back at least as far as Babylonia in 200 ...