Search results
Results from the WOW.Com Content Network
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance [1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance.
Complex traits are also known as polygenic traits and multigenic traits. [1] [2] The existence of complex traits, which are far more common than Mendelian traits, represented a significant challenge to the acceptance of Mendel's work. Modern understanding has 3 categories of complex traits: quantitative, meristic, and threshold.
The infinitesimal model, also known as the polygenic model, is a widely used statistical model in quantitative genetics and in genome-wide association studies.Originally developed in 1918 by Ronald Fisher, it is based on the idea that variation in a quantitative trait is influenced by an infinitely large number of genes, each of which makes an infinitely small (infinitesimal) contribution to ...
In fact, the terms 'multifactorial' and 'polygenic' are used as synonyms and these terms are commonly used to describe the architecture of disease causing genetic component. [2] Multifactorial diseases are often found gathered in families yet, they do not show any distinct pattern of inheritance.
Traits controlled by two or more genes are said to be polygenic traits. Polygenic means "many genes" are necessary for the organism to develop the trait. For example, at least three genes are involved in making the reddish-brown pigment in the eyes of fruit flies. Polygenic traits often show a wide range of phenotypes.
Unlike monogenic traits, polygenic traits do not follow patterns of Mendelian inheritance (discrete categories). Instead, their phenotypes typically vary along a continuous gradient depicted by a bell curve. [8] An example of a polygenic trait is human skin color variation.
An example of the codominant inheritance of some of the four blood groups. Mendelian traits in humans are human traits that are substantially influenced by Mendelian inheritance. Most – if not all – Mendelian traits are also influenced by other genes, the environment, immune responses, and chance.
Pleiotropy seems limited for many traits in humans since the SNP overlap, as measured by variance accounted for, between many polygenic predictors is small. Most genetic traits are polygenic in nature: controlled by many genetic variants, each of small effect. These genetic variants can reside in protein coding or non-coding regions of the genome.