Search results
Results from the WOW.Com Content Network
Firstly, the graph model can be a natural fit for data sets that have hierarchical, complex, or even arbitrary structures. Such structures can be easily encoded into the graph model as edges. This can be more convenient than the relational model, which requires the normalization of the data set into a set of tables with fixed row types.
GraphQL is a data query and manipulation language that allows specifying what data is to be retrieved ("declarative data fetching") or modified. A GraphQL server can process a client query using data from separate sources and present the results in a unified graph. [2] The language is not tied to any specific database or storage engine.
Since its launch a few years ago, GraphQL platform Hasura has made it easier for developers to use GraphQL by simplifying the process of connecting their data sources to their applications and ...
An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [ 12 ] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described.
For exchanging the extracted models—in particular for use in predictive analytics—the key standard is the Predictive Model Markup Language (PMML), which is an XML-based language developed by the Data Mining Group (DMG) and supported as exchange format by many data mining applications. As the name suggests, it only covers prediction models ...
The relational model gathers data together using information in the data. For example, one might look for all the "users" whose phone number contains the area code "311". This would be done by searching selected datastores, or tables, looking in the selected phone number fields for the string "311".
The growth of the use of semi-structured data has created new opportunities for data mining, which has traditionally been concerned with tabular data sets, reflecting the strong association between data mining and relational databases. Much of the world's interesting and mineable data does not easily fold into relational databases, though a ...
Data modeling techniques and methodologies are used to model data in a standard, consistent, predictable manner in order to manage it as a resource. The use of data modeling standards is strongly recommended for all projects requiring a standard means of defining and analyzing data within an organization, e.g., using data modeling: