enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]

  3. Equilibrant force - Wikipedia

    en.wikipedia.org/wiki/Equilibrant_Force

    Equilibrant force. In mechanics, an equilibrant force is a force which brings a body into mechanical equilibrium. [1] According to Newton's second law, a body has zero acceleration when the vector sum of all the forces acting upon it is zero:

  4. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...

  6. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    Classical mechanics was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. [3]

  7. Mechanics - Wikipedia

    en.wikipedia.org/wiki/Mechanics

    According to Shlomo Pines, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration]." [13]

  8. D'Alembert's principle - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_principle

    D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.

  9. Detailed balance - Wikipedia

    en.wikipedia.org/wiki/Detailed_balance

    A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...