enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.

  4. Gerhard Frey - Wikipedia

    en.wikipedia.org/wiki/Gerhard_Frey

    Gerhard Frey (German:; born 1 June 1944) is a German mathematician, known for his work in number theory.Following an original idea of Hellegouarch, [1] he developed the notion of Frey–Hellegouarch curves, a construction of an elliptic curve from a purported solution to the Fermat equation, that is central to Wiles's proof of Fermat's Last Theorem.

  5. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. [1] One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1. In this case, + = is unsolvable. Germain’s proof, however, remained ...

  6. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    Using the above rule, we can complete the proof of Fermat's little theorem quite easily, as follows. Our starting pool of a p strings may be split into two categories: Some strings contain p identical symbols. There are exactly a of these, one for each symbol in the alphabet. (In our running example, these are the strings AAAAA and BBBBB.)

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  8. Wiles's proof of Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Wiles's_proof_of_Fermat's...

    Following the developments related to the Frey curve, and its link to both Fermat and Taniyama, a proof of Fermat's Last Theorem would follow from a proof of the Taniyama–Shimura–Weil conjecture—or at least a proof of the conjecture for the kinds of elliptic curves that included Frey's equation (known as semistable elliptic curves).

  9. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    Although the original paper of Rivest, Shamir, and Adleman used Fermat's little theorem to explain why RSA works, it is common to find proofs that rely instead on Euler's theorem. We want to show that m ed ≡ m (mod n), where n = pq is a product of two different prime numbers, and e and d are positive integers satisfying ed ≡ 1 (mod φ(n)).