enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "hogging", and a positive moment will cause "sagging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.

  3. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).

  4. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The bending moment applied to the beam also has to be specified. The rotation φ {\displaystyle \varphi } and the transverse shear force Q x {\displaystyle Q_{x}} are not specified. Clamped beams : The displacement w {\displaystyle w} and the rotation φ {\displaystyle \varphi } are specified to be zero at the clamped end.

  5. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  6. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    This is because a beam's overall stiffness, and thus its resistance to Euler buckling when subjected to an axial load and to deflection when subjected to a bending moment, is directly proportional to both the Young's modulus of the beam's material and the second moment of area (area moment of inertia) of the beam.

  7. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different. In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational ...

  8. The Secret Meaning Behind Kate Middleton’s Hat Choice ... - AOL

    www.aol.com/secret-meaning-behind-kate-middle...

    Kate Middleton's body language was upbeat and confident during the royal family's annual Christmas walk, and she sent a specific message with her hat choice.

  9. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.