Search results
Results from the WOW.Com Content Network
Neil Bartlett (15 September 1932 – 5 August 2008) was a British chemist who specialized in fluorine and compounds containing fluorine, and became famous for creating the first noble gas compounds. He taught chemistry at the University of British Columbia and the University of California, Berkeley .
Xenon hexafluoroplatinate is the product of the reaction of platinum hexafluoride with xenon, in an experiment that proved the chemical reactivity of the noble gases.This experiment was performed by Neil Bartlett at the University of British Columbia, who formulated the product as "Xe + [PtF 6] −", although subsequent work suggests that Bartlett's product was probably a salt mixture and did ...
The first published report, in June 1962, of a noble gas compound was by Neil Bartlett, who noticed that the highly oxidising compound platinum hexafluoride ionised O 2 to O + 2. As the ionisation energy of O 2 to O + 2 (1165 kJ mol −1 ) is nearly equal to the ionisation energy of Xe to Xe + (1170 kJ mol −1 ), he tried the reaction of Xe ...
Energy stocks have outperformed the broader market to start the year, kicking off 2025 with gains as oil and natural gas prices have edged higher. The S&P 500 Energy Sector (XLE) is up 2.8% year ...
2, whose first ionization potential is 12.2 eV, led Neil Bartlett to correctly surmise that it might be able to oxidise xenon (first ionization potential 12.13 eV). This led to the discovery of xenon hexafluoroplatinate, [2] which proved that the noble gases, previously thought to be inert, are able to form chemical compounds.
After declining by over 18% in 2022, the S&P 500 has been on a roll for the past two years. In 2023, the U.S. stock market's most important index gained over 24%, and so far in 2024 it has gained ...
Image source: Getty Images. 1. Lockheed Martin. After its stock price reached an all-time high earlier this year, Lockheed Martin and its defense contractor peers have sold off considerably over ...
Xenon reversibly complexes gaseous M(CO) 5, where M=Cr, Mo, or W. p-block metals also bind noble gases: XeBeO has been observed spectroscopically and both XeBeS and FXeBO are predicted stable. [27] The compound Xe 2 Sb 2 F 11 contains a Xe–Xe bond, the longest element-element bond known (308.71 pm = 3.0871 Å). [28]