enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as = for some scalar eigenvalue . [1] [2] [3] The solutions to this equation may ...

  3. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  4. Oscillation theory - Wikipedia

    en.wikipedia.org/wiki/Oscillation_theory

    In 1996 Gesztesy–Simon–Teschl showed that the number of roots of the Wronski determinant of two eigenfunctions of a Sturm–Liouville problem gives the number of eigenvalues between the corresponding eigenvalues. It was later on generalized by Krüger–Teschl to the case of two eigenfunctions of two different Sturm–Liouville problems.

  5. Sturm–Liouville theory - Wikipedia

    en.wikipedia.org/wiki/Sturm–Liouville_theory

    The differential equation is said to be in Sturm–Liouville form or self-adjoint form.All second-order linear homogenous ordinary differential equations can be recast in the form on the left-hand side of by multiplying both sides of the equation by an appropriate integrating factor (although the same is not true of second-order partial differential equations, or if y is a vector).

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix, or (increasingly) of the graph's Laplacian matrix due to its discrete Laplace operator, which is either (sometimes called the combinatorial Laplacian) or / / (sometimes called the normalized Laplacian), where is a diagonal matrix with ...

  7. Hilbert–Schmidt theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_theorem

    Let (H, , ) be a real or complex Hilbert space and let A : H → H be a bounded, compact, self-adjoint operator.Then there is a sequence of non-zero real eigenvalues λ i, i = 1, …, N, with N equal to the rank of A, such that |λ i | is monotonically non-increasing and, if N = +∞, + =

  8. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  9. Fredholm alternative - Wikipedia

    en.wikipedia.org/wiki/Fredholm_alternative

    This is the dichotomy that was claimed in (1)–(2) above. By the spectral theorem for compact operators, one also obtains that the set of λ for which the solvability fails is a discrete subset of R (the eigenvalues of L). The eigenvalues’ associated eigenfunctions can be thought of as "resonances" that block the solvability of the equation.