Search results
Results from the WOW.Com Content Network
Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.
This helps when trying to solve oxidation questions. A charge number also can help when drawing Lewis dot structures. For example, if the structure is an ion, the charge will be included outside of the Lewis dot structure. Since there is a negative charge on the outside of the Lewis dot structure, one electron needs to be added to the structure.
Since these compounds tend to be more reactive than compounds that obey their rule, electron counting is an important tool for identifying the reactivity of molecules. While the counting formalism considers each atom separately, these individual atoms (with their hypothetical assigned charge) do not generally exist as free species.
When comparing resonance structures for the same molecule, usually those with the fewest formal charges contribute more to the overall resonance hybrid. When formal charges are necessary, resonance structures that have negative charges on the more electronegative elements and positive charges on the less electronegative elements are favored.
As an example, summing bond orders in the ammonium cation yields −4 at the nitrogen of formal charge +1, with the two numbers adding to the oxidation state of −3: The sum of oxidation states in the ion equals its charge (as it equals zero for a neutral molecule). Also in anions, the formal (ionic) charges have to be considered when nonzero.
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)
UBS recommends tech, financials, industrials and utilities stocks going into 2025, citing continued AI growth and pro-business policies under Trump.
For a high-oxidation-state metal center with a +4 charge or greater it is understood that the true charge separation is much smaller. But referring to the formal oxidation state and d electron count can still be useful when trying to understand the chemistry.